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Exercise 13

Solve the Cauchy problem for the linear Klein-Gordon equation

utt − c2uxx + a2u = 0, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

(
∂u

∂t

)
t=0

= g(x) for −∞ < x <∞.

Solution

The PDE is defined for −∞ < x <∞, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

F{u(x, t)} = U(k, t) =
1√
2π

ˆ ∞
−∞

e−ikxu(x, t) dx,

which means the partial derivatives of u with respect to x and t transform as follows.

F
{
∂nu

∂xn

}
= (ik)nU(k, t)

F
{
∂nu

∂tn

}
=
dnU

dtn

Take the Fourier transform of both sides of the PDE.

F{utt − c2uxx + a2u} = F{0}

The Fourier transform is a linear operator.

F{utt} − c2F{uxx}+ a2F{u} = 0

Transform the derivatives with the relations above.

d2U

dt2
− c2(ik)2U + a2U = 0

Expand the second term and factor U .

d2U

dt2
+ (c2k2 + a2)U = 0 (1)

The PDE has thus been reduced to an ODE. Before we solve it, we have to transform the initial
conditions as well. Taking the Fourier transform of the initial conditions gives

u(x, 0) = f(x) → F{u(x, 0)} = F{f(x)}
U(k, 0) = F (k) (2)

∂u

∂t
(x, 0) = g(x) → F

{
∂u

∂t
(x, 0)

}
= F{g(x)}

dU

dt
(k, 0) = G(k). (3)
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Equation (1) is an ODE in t, so k is treated as a constant. The solution to the ODE is given in
terms of sine and cosine.

U(k, t) = A(k) cos
√
c2k2 + a2t+B(k) sin

√
c2k2 + a2t

Apply the first initial condition, equation (2).

U(k, 0) = A(k) = F (k)

In order to apply the second initial condition, differentiate U(k, t) with respect to t.

dU

dt
= −A(k)

√
c2k2 + a2 sin

√
c2k2 + a2t+B(k)

√
c2k2 + a2 cos

√
c2k2 + a2t

Now apply equation (3).

dU

dt
(k, 0) = B(k)

√
c2k2 + a2 = G(k) → B(k) =

G(k)√
c2k2 + a2

Therefore, the solution to the ODE that satisfies the initial conditions is

U(k, t) = F (k) cos
√
c2k2 + a2t+

G(k)√
c2k2 + a2

sin
√
c2k2 + a2t.

To make U(k, t) easier to work with, introduce a new variable ω = ω(k) for the square root term.

ω(k) =
√
c2k2 + a2

Then

U(k, t) = F (k) cosωt+
G(k)

ω
sinωt.

In order to change back to u(x, t), we have to take the inverse Fourier transform of U(k, t). It is
defined as

F−1{U(k, t)} = u(x, t) =
1√
2π

ˆ ∞
−∞

U(k, t)eikx dk.

Plug U(k, t) into the definition.

u(x, t) =
1√
2π

ˆ ∞
−∞

[
F (k) cosωt+

G(k)

ω
sinωt

]
eikx dk

Recall that sine and cosine can be written in terms of exponentials using Euler’s formula.

cosωt =
eiωt + e−iωt

2

sinωt =
eiωt − e−iωt

2i

Substitute these expressions into the equation.

u(x, t) =
1√
2π

ˆ ∞
−∞

[
F (k)

eiωt + e−iωt

2
+
G(k)

ω

eiωt − e−iωt

2i

]
eikx dk
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Expand the integrand and factor the terms in eiωt and e−iωt.

u(x, t) =
1√
2π

ˆ ∞
−∞

{[
F (k)

2
+
G(k)

2iω

]
eiωt +

[
F (k)

2
− G(k)

2iω

]
e−iωt

}
eikx dk

Factor the terms in square brackets and distribute eikx.

u(x, t) =
1√
2π

ˆ ∞
−∞

{
1

2

[
F (k) +

G(k)

iω

]
ei(kx+ωt) +

1

2

[
F (k)− G(k)

iω

]
ei(kx−ωt)

}
dk

Therefore,

u(x, t) =
1√
2π

ˆ ∞
−∞

[
A(k)ei(kx+ωt) +B(k)ei(kx−ωt)

]
dk,

where

ω = ω(k) =
√
c2k2 + a2

A(k) =
1

2

[
F (k) +

G(k)

iω

]
B(k) =

1

2

[
F (k)− G(k)

iω

]
F (k) =

1√
2π

ˆ ∞
−∞

e−ikxf(x) dx

G(k) =
1√
2π

ˆ ∞
−∞

e−ikxg(x) dx.

In the event a = 0, then

ω = ck

A(k) =
1

2

[
F (k) +

G(k)

ick

]
B(k) =

1

2

[
F (k)− G(k)

ick

]
,

and d’Alembert’s solution for the wave equation is obtained as expected (see pg. 37 in the
textbook).
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